PSCI 1421: Lecture 6 Chapter 3: Force and Motion Cont

Martha Casquete

What's in today's menu?

- Newton's Third Law of Motion
- Newton's Law of Gravitation
- Buoyancy
, Momentum

What did we study?

- Net force/Balance and unbalance forces
- Newton's First Law of Motion/Law of Inertia
- Newton's Second Law of Motion/F = ma

What did we learn?

- When more than one force acts, a net, or unbalanced, force is need
A single applied force will produce an acceleration
- How much inertia do you have?
- Newton's First Law of Motion is sometimes called the law of inertia
- According to Newton's second law, an external, net force will produce an acceleration

Mass \& Weight

- Mass $=$ amount of matter present
- Weight = related to the force of gravity
, Earth: weight $=$ mass \times acc. due to gravity
- $\mathrm{w}=m g$ (special case of $F=m a$) Weight is a force due to the pull of gravity.
- Therefore, one's weight changes due to changing pull of gravity - like between the earth and moon.
- Moon's gravity is only $1 / 6^{\text {th }}$ that of earth's.

Computing Weight - an example

What is the weight of a 3.50 kg mass on (a) earth, and (b) the moon? (in N and Ib)
$1 \mathrm{lb}=4.45 \mathrm{~N}$

Acceleration due to gravity is

 independent of the mass.

Both are doubled!

Friction

- It is the ever-present resistance to relative motion that occurs whenever two materials are in contact with each other.
- Classified into two types: static friction and sliding (or kinetic).
- Static friction occurs when the frictional force is sufficient to prevent relative motion between surfaces.
- Sliding friction, or kinetic friction, occurs when there is relative (sliding) motion between the surfaces in contact. Static friction larger than sliding friction

Newton's Third Law of Motion

- For every action there is an equal and opposite reaction.
or
- Whenever on object exerts a force on a second object, the second object exerts an equal and opposite force on the first object.
- action $=$ opposite reaction
- $F_{1}=-F_{2}$ or $m_{1} a_{1}=-m_{2} a_{2}$

Newton's Third Law of Motion

- $F_{1}=-F_{2} \quad$ or $\quad m_{1} a_{1}=-m_{2} a_{2}$
- Jet propulsion - exhaust gases in one direction and the rocket in the other direction
- Gravity - jump from a table and you will accelerate to earth. In reality BOTH you and the earth are accelerating towards each other
- You - small mass, huge acceleration ($m_{1} a_{l}$)
- Earth - huge mass, very small acceleration $\left(-m_{2} a_{2}\right)$

$$
B U T \rightarrow m_{1} a_{1}=-m_{2} a_{2}
$$

Newton's Laws in Action

- Friction on the tires provides necessary centripetal acceleration.
- Passengers continue straight ahead in original direction and as car turns the door comes toward passenger - $1^{\text {st }}$ Law
As car turns you push against door and the door equally pushes against you - $3^{\text {rd }}$ Law

Newton's Law of Gravitation

- What keeps the Moon in orbit around the Earth?
- Are astronauts seen floating in the international Space Station really weightless?

Newton's Law of Gravitation

- Gravity is a fundamental force of nature - We do not know what causes it
- We can only describe it
- Law of Universal Gravitation - Every particle in the universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them

Newton's Law of Gravitation

- Equation form: $F=\frac{G m_{1} m_{2}}{r^{2}}$
- G is the universal gravitational constant
, $G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
- G:
- is a very small quantity
- thought to be valid throughout the universe
- was measured by Cavendish 70 years after Newton's death
- not equal to " g " and not a force

Newton's Law of Gravitation

$$
F=\frac{G m_{1} m_{2}}{r^{2}}
$$

The forces that attract particles together are equal and opposite

$$
F_{1}=-F_{2} \quad \text { or } \quad m_{1} a_{1}=-m_{2} a_{2}
$$

Newton's Law of Gravitation

$$
\cdot F=\frac{G m_{1} m_{2}}{r^{2}}
$$

- For a homogeneous sphere the gravitational force acts as if all the mass of the sphere were at its center

Applying Newton's Law of Gravitation

- Example: Two objects with masses of 2.5 kg and 3.0 kg are 2.0 m apart. What is the force in each mass in Newtons and pounds? What is the magnitude of the gravitational force between the masses?

Force of Gravity on Earth

- $\mathrm{F}=\frac{G m M^{E}}{R_{E}^{2}}$ [force of gravity on object of mass m]
- M_{E} and R_{E} are the mass and radius of Earth
- This force is just the object's weight ($w=$
- $\stackrel{m g}{ } \therefore w=m g=\frac{G m M^{E}}{R_{E}^{2}}$
- $g=\frac{G M^{E}}{R_{E}^{2}}$
- m cancels out $\therefore g$ is independent of mass

Acceleration due to Gravity for a Spherical Uniform Object

- $g=\frac{G M}{r^{2}}$
$g=$ acceleration due to gravity
- $M=$ mass of any spherical uniform object
- r = distance from the object's center

Earth Orbit - Centripetal Force

"Weightlessness" in space is the result of both the astronaut and the spacecraft 'falling' to Earth as the same rate

Linear Momentum

- Linear momentum $=$ mass \times velocity
- $\mathrm{p}=m v$
- If we have a system of masses, the linear momentum is the sum of all individual momentum vectors.
- $P_{f}=P_{i} \quad$ (final $=$ initial)
- $P=\square_{1}+\square_{2}+\square_{3}+\ldots$ (sum of the individual momentum vectors)

Law of Conservation of Linear Momentum

- Law of Conservation of Linear Momentum the total linear momentum of an isolated system remains the same if there is no external, unbalanced force acting on the system
- Linear Momentum is 'conserved' as long as there are no external unbalance forces.
- It does not change with time.

Conservation of Linear Momentum

- When the man jumps out of the boat he has momentum in one direction and, therefore, so does the boat.
Their momentums must cancel out! (= 0)

Conservation of Linear and Impulse

- How Newton's three laws, momentum and impulse have to do with a car accident?
- What can we learn from a raw egg?

Conservation of Linear momentum and Impulse

- First, I need to explain what impulse is:
- Start with Newton's Second Law
- $\mathrm{F}=\mathrm{ma}$
- but $\mathrm{a}=\mathrm{v} / \mathrm{t}$
- Hence, $F=m(v / t)$ what happens if we mult. by t
- $\mathrm{F} * \Delta \mathrm{t}=\mathrm{m} * \mathrm{v}$
- Well, in physics $\mathrm{F}^{*} \Delta \mathrm{t}=$ Impulse
- and $\mathrm{m}^{*} \Delta \mathrm{v}=$ momentum
- Therefore: change impulse = change momentum

What is impulse

F t = change in momentum
F_{t} = change in momentum

Demonstration

- Egg

Chapter 3 - Important Equations

- $F=m a$ ($2^{\text {nd }}$ Law) or $w=m g$ (for weight)
- $F_{1}=-F_{2}$ (3 ${ }^{\text {rd }}$ Law)
- $F=\left(G m_{1} m_{2}\right) / r^{2} \quad$ (Law of Gravitation)
- $G=6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$ (gravitational constant)
- $g=G M / r^{2}$ (acc. of gravity, $M=$ mass of sph . object)
$P=m v$ (linear momentum)
- $P_{f}=P_{i}$ (conservation of linear momentum)
- Impulse $=F * \Delta t=$ change in momentum

